

INSTYTUT TECHNIKI BUDOWLANEJ PL 00-611 WARSZAWA ul. Filtrowa 1 tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86 www.itb.pl

European Technical Assessment

ETA-07/0291 of 28/12/2017

General Part

Technical Assessment Body issuing the European Technical Assessment	Instytut Techniki Budowlanej
Trade name of the construction product	KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M
Product family to which the construction product belongs	Nailed-in plastic anchors for fixing of external thermal insulation composite systems with rendering in concrete and masonry
Manufacturer	RAWLPLUG S.A. ul. Kwidzyńska 6 PL 51-416 Wrocław Poland
Manufacturing plant(s)	Manufacturing Plant no. 3
This European Technical Assessment contains	21 pages including 3 Annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	European Assessment Document EAD 330196- 01-0604 "Plastic anchors made of virgin or non- virgin material for fixing of external thermal insulation composite systems with rendering"
This version replaces	ETA-07/0291 issued on 30/06/2014

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The KOELNER KI-10 nailed-in plastic anchor consists of an anchor sleeve with a plate made of polypropylene and an accompanying specific nail as an expansion pin made of the glass fibre reinforced polypropylene.

The KOELNER KI-10PA nailed-in plastic anchor consists of anchor sleeve with a plate made of polypropylene and an accompanying specific nail as an expansion pin made of glass fibre reinforced polyamide.

The KOELNER KI-10M nailed in plastic anchor consists of anchor sleeve with a plate made of polypropylene and an accompanying specific steel nail as an expansion pin.

The plastic anchor sleeve is expanded by hammering a nail, which press the sleeve against the wall of the drilled hole.

The KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M anchors may in addition be combined with the plates KWL-90, KWL-110 and KWL-140.

The illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Annex C are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 **Performance of the product**

3.1.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	Annex C1
Edge distances and spacings	Annex B2
Plate stiffness	Annex C2
Displacements	Annex C3

3.1.2 Energy economy and heat retention (BWR 6)

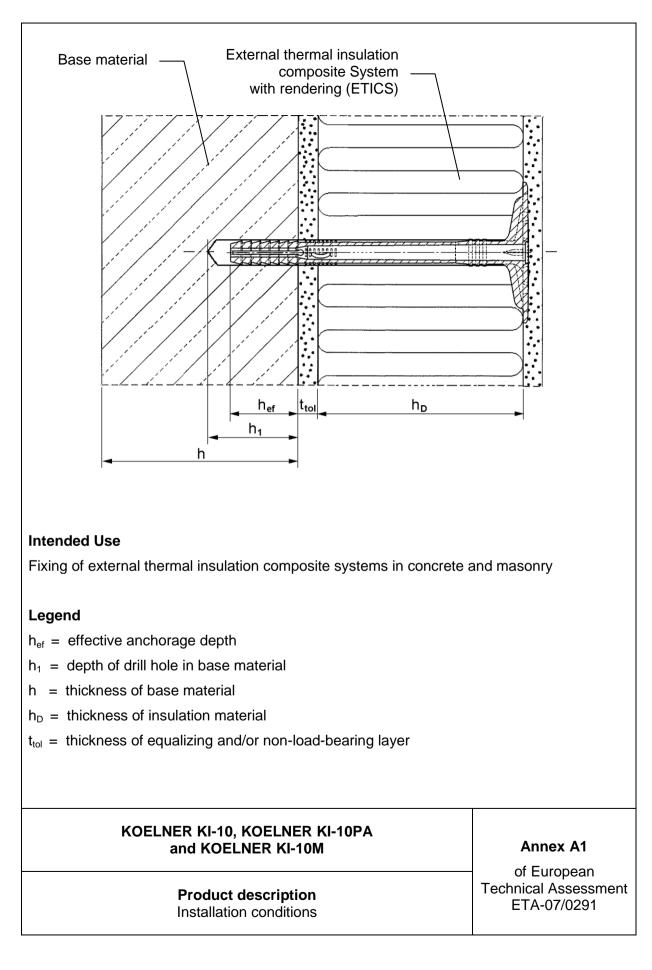
Essential characteristic	Performance
Point thermal transmittance	Annex C2

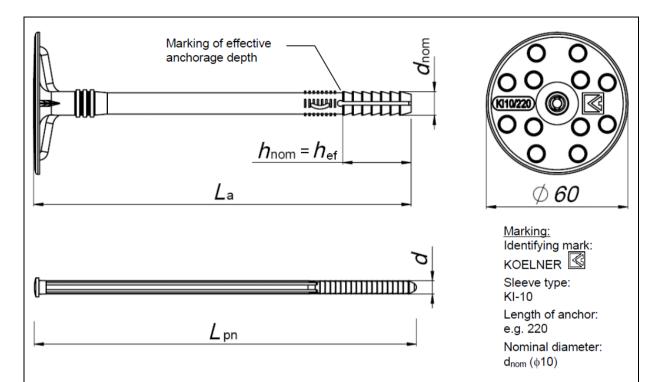
3.2 Methods used for the assessment

The assessment of the product for the declared intended use has been made in accordance with the EAD 330196-01-0604 "Plastic anchors made of virgin or non-virgin material for fixing of external thermal insulation composite systems with rendering".

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to the Decision 97/463/EC of the European Commission the system 2+ of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) applies.


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

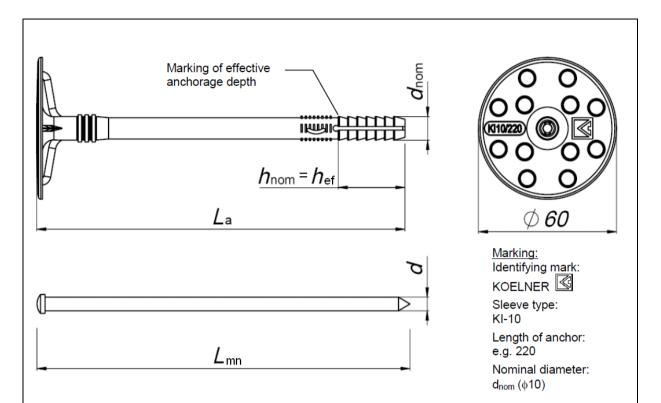

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 28/12/2017 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

Table A1: KOELNER KI-10 and KOELNER KI-10PA anchor types and dimensions [mm]


Anchor turno		Anchor sleeve	Expans	sion pin	
Anchor type	d _{nom}	La	h _{ef}	d	L _{pn}
KI-10/70 or KI-10PA/70	10 _{±0,5}	70 _{±2}	25	6,2 _{±02}	70 _{±2}
KI-10/90 or KI-10PA/90	10 _{±0,5}	90 _{±2}	25	6,2 _{±02}	90 _{±2}
KI-10/120 or KI-10PA/120	10 _{±0,5}	120 _{±2}	25	6,2 _{±02}	120 _{±2}
KI-10/140 or KI-10PA/140	10 _{±0,5}	140 _{±2}	25	6,2 _{±02}	140 _{±2}
KI-10/160 or KI-10PA/160	10 _{±0,5}	160 _{±2}	25	6,2 _{±02}	160 _{±2}
KI-10/180 or KI-10PA/180	10 _{±0,5}	180 _{±2}	25	$6,2_{\pm 02}$	180 _{±2}
KI-10/200 or KI-10PA/200	10 _{±0,5}	200 _{±2}	25	6,2 _{±02}	200 _{±2}
KI-10/220 or KI-10PA/220	10 _{±0,5}	220 _{±2}	25	6,2 _{±02}	220 _{±2}

Determination of maximum thickness of insulation material: $h_D = L_a - t_{tol} - h_{ef}$

KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M

Product description Marking and dimensions of the anchor sleeve and expansion element of the KOELNER KI-10 and KOELNER KI-10PA anchors

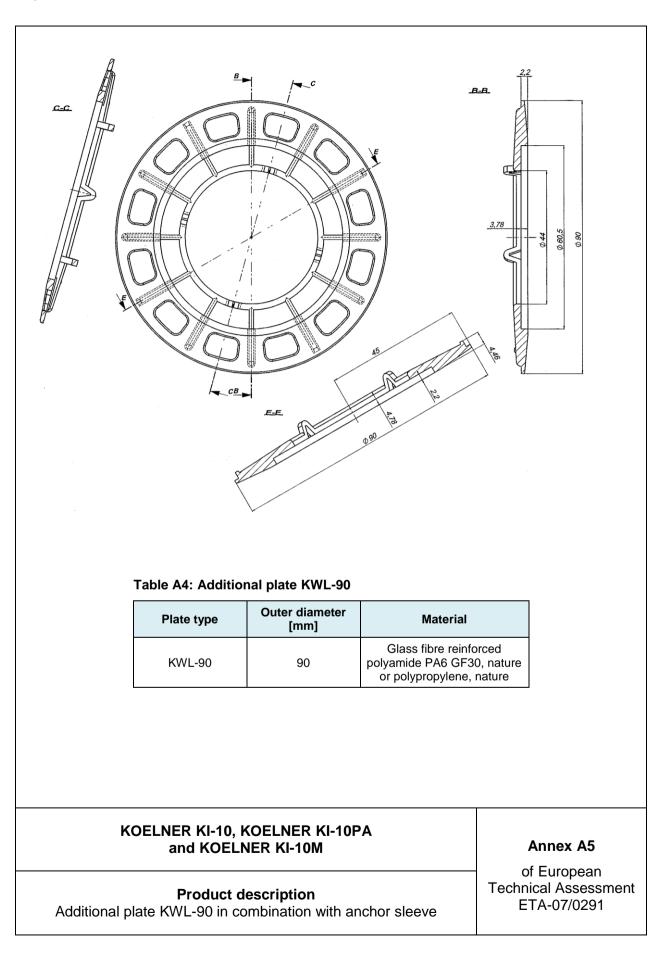
Annex A2

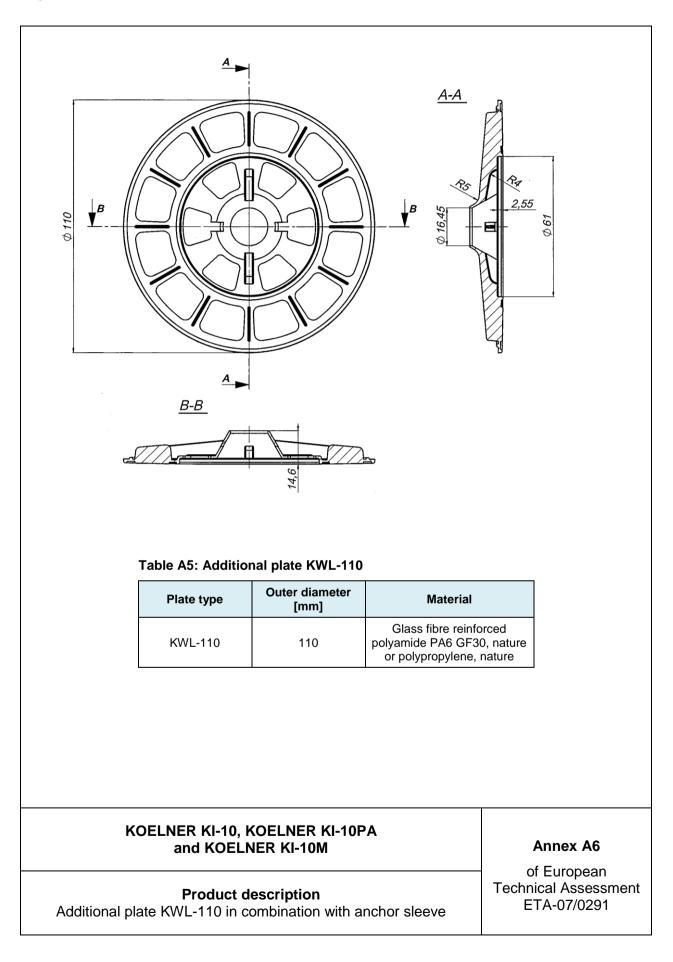
Table A2: KOELNER KI-10M anchor types and dimensions [mm]

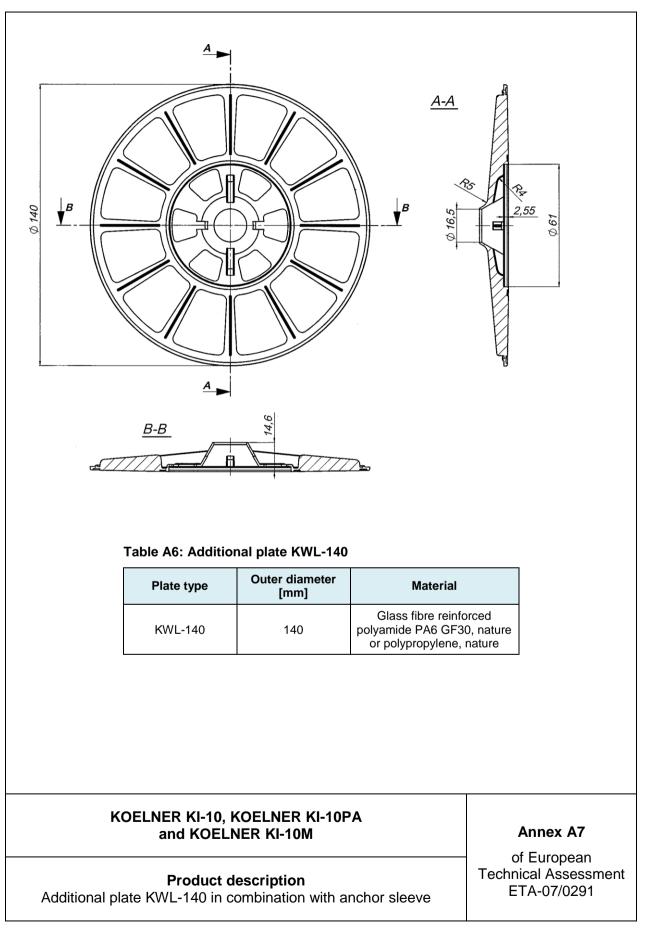
Anchor type		Anchor sleeve	Expans	sion pin	
Anchor type	d _{nom}	La	h _{ef}	d	L _{mn}
KI-10M/70	$10_{\pm 0,5}$	70 _{±2}	25	4,9 _{±0,1}	70+5
KI-10M/90	$10_{\pm 0,5}$	90 _{±2}	25	4,9 _{±0,1}	90 ₊₅
KI-10M/120	$10_{\pm 0,5}$	120 _{±2}	25	4,9 _{±0,1}	120 ₊₅
KI-10M/140	$10_{\pm 0,5}$	140 _{±2}	25	$4,9_{\pm 0,1}$	140 ₊₅
KI-10M/160	$10_{\pm 0,5}$	160 _{±2}	25	$4,9_{\pm 0,1}$	160 ₊₅
KI-10M/180	$10_{\pm 0,5}$	180 _{±2}	25	$4,9_{\pm 0,1}$	180 ₊₅
KI-10M/200	$10_{\pm 0,5}$	200 _{±2}	25	$4,9_{\pm 0,1}$	200+5
KI-10M/220	$10_{\pm 0,5}$	220 _{±2}	25	4,9 _{±0,1}	220 ₊₅
KI-10M/260	$10_{\pm 0,5}$	260 _{±2}	25	4,9 _{±0,1}	260+5

Determination of maximum thickness of insulation material: $h_D = L_a - t_{tol} - h_{ef}$

KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M


Product description Marking and dimensions of the anchor sleeve and expansion element of the KOELNER KI-10M anchors Annex A3


Table A3: Materials


Designation	Material
Anchor sleeve	Virgin plastic: polypropylene, with different colours ¹⁾
Expansion pin made of steel	Carbon steel (f _{y,k} = 180 MPa, f _{u,k} = 300 MPa) galvanised \geq 5 μm according to EN ISO 4042
Expansion pin made of plastic	Virgin plastic: glass fibre reinforced polypropylene PPHGF30 nature (KOELNER KI-10) or glass fibre reinforced polyamide PA6 GF30, nature (KOELNER KI-10PA)
¹⁾ nature, blue, brown, re	d, white, black, green, yellow, grey

KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M

Product description Materials Annex A4

Specification of intended use

Anchorages subject to:

Wind suction loads.

Note: The anchor shall not be used for the transmission of dead loads of the external thermal insulation composite system (ETICS).

Base materials:

- Normal weight concrete (use category A), according to Annex C1.
- Solid masonry (use category B), according to Annex C1.
- Hollow or perforated masonry (use category C), according to Annex C1.
- Lightweight aggregate concrete (use category D), according to Annex C1.
- Autoclaved aerated concrete (use category E), according to Annex C1.
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051, edition December 2016.

Temperature range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors γ_M = 2,0 and γ_F = 1,5, if there are no other national regulations.
- Verifiable calculation notes and drawings with anchor positions are prepared taking into account of the loads to be anchored.
- Fasteners are only to be used for multiple fixings of external thermal insulation composite system (ETICS).

Installation:

- Hole shall be drilled by the drill modes according to Annex C1.
- Anchor installation shall be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation shall be executed in temperature from 0°C to +40°C.
- Exposure to UV due to solar radiation of the anchor not protected by rendering by the mortar shall not exceed ≤ 6 weeks.

KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M

Intended use Specifications

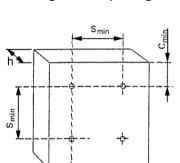
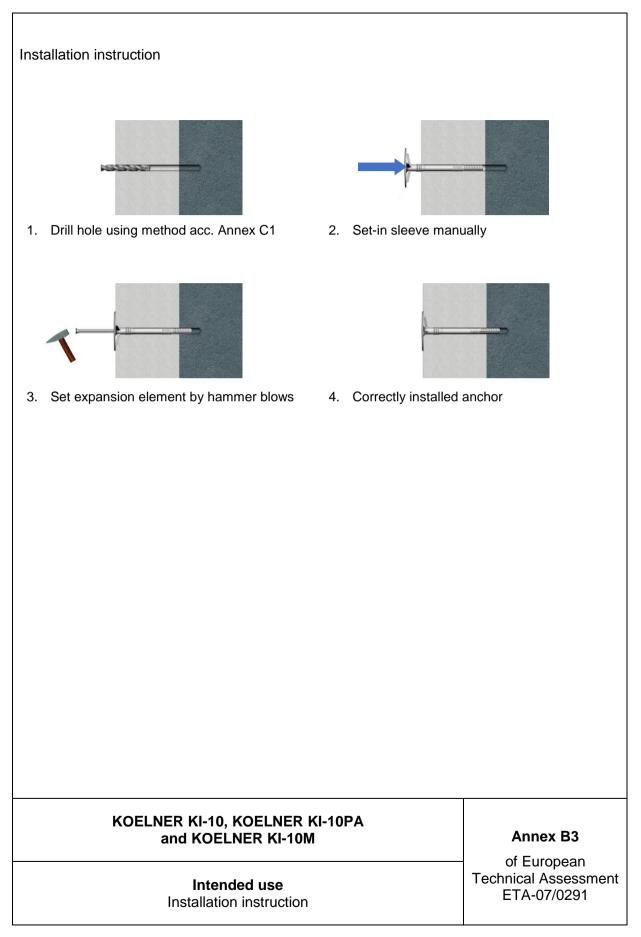

Annex B1

Table B1: Installation characteristics

Anchor type		KI-10, I	KI-10PA and	KI-10M
Use category for infendent use	e	A, B, C	D	E
Nominal diameter of drill bit	d₀ [mm]		10	
Cutting diameter of drill bit	d _{cut} [mm]		≤ 10,45	
Depth of drill hole	h₁ [mm]	≥ 35	≥ 50	≥ 70
Effective anchorage depth	h _{ef} [mm]	≥ 25	≥ 40	≥ 60

Table B2: Minimum thickness of base material, edge distance and anchor spacing

Anchor type		KI-10, KI-10PA and KI-10M
Minimum thickness of base materi	al h [mm]	100
Minimum spacing	s _{min} [mm]	100
Minimum edge distance	c _{min} [mm]	100


Diagram of spacing

KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M

C_{min}

Intended use Installation characteristics, minimum thickness of base material, edge distance and spacing

Annex B2

		Bulk	Min. compressive	Referring		N _{Rk} [kN]		Drill
Category	Base material	density [kg/dm ³]	strength [N/mm ²]	standard	KI-10	KI-10PA	KI-10M	method
А	Concrete C12/15			EN 206-1	0,5	0,4	0,5	
A	Concrete C16/20 ÷ C50	/60		EN 206-1	0,5	0,4	0,5	
	Clay brick	≥ 1,70	30,0	EN 771-1	0,5	0,4	0,4	hammer
В	Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106)	≥ 2,00	20,0	EN 771-2	0,6	0,4	0,6	hammer
С	Calcium silicate hollow block (for example Kalksandstein KS L- R(P) 8 DF Lochstein according to DIN 106) $a^{11} = 30 \text{ mm}$	≥ 1,60	12,0	EN 771-2	0,6	0,4	0,5	rotary
J	Perforated ceramic brick (for example HIz B – 1.0 1NF 12-1 according to DIN 105) $a^{1)} = 13 \text{ mm}$	≥ 0,95	12,0	EN 771-1	0,4	0,3	0,4	rotary
	KOELNER K and k		DELNER KI- ER KI-10M	-10PA			Annex	
		erforma	ances resistance				of Europ nical As ETA-07/	sessme

		Bulk	Min. compressive	Referring		N _{Rk} [kN]		Drill
Category	Base material	density [kg/dm³]	strength [N/mm ²]	standard	KI-10	KI-10PA	KI-10M	method
	Perforated ceramic brick (for example HIz B – 1.0 3NF 12-1 according to DIN 105) $a^{1)} = 13 \text{ mm}$	≥ 0,95	12,0	EN 771-1	0,4	0,4	0,4	rotary
	Verticaly perforated porosited block (for example Porotherm 25 P+W)	≥ 0,80	15,0	EN 771-1	0,4	0,4	0,3	rotary
С	a ¹⁾ = 10 mm							
	Verticaly perforated ceramic block (for example MEGA- MAX 250)	≥ 0,80	15,0	EN 771-1	0,3	0,4	0,3	rotary
	a ¹⁾ = 12 mm							
	KOELNER KI and K		DELNER KI- ER KI-10M	-10PA			Annex of Euro	

	Base	Bulk	Min. compressive	Referring		N _{Rk} [kN]		Drill
Category	material	density [kg/dm³]	strength [N/mm ²]	standard	KI-10	KI-10PA	KI-10M	method
С	Lightweight concrete hollow block (for example Hbl according to DIN 18151) $a^{1)} = 30$ [mm]	≥ 0,80	2,0	EN 771-3	0,4	0,4	0,4	rotary
D	Lightweight concrete block	≥ 1,56	20,0	EN 771-3	0,5	0,75	0,6	hamme
Е	Autoclaved aerated concrete block	≥ 0,35	2,0	EN 771-4	0,1	0,1	0,1	rotary
	ence of national regu	ulations				uction are red		
	ence of national regu	Jlations						

Anchor type	Insulation thickness H _D	Point thermal transmittance
	[mm]	χ [W/K]
KI-10 and KI-10PA	45 – 195	0
	45	0,006
KI-10M	150	0,004
	195	0,004
	235	0,003

Table C3: Plate stiffness according to EOTA Technical Report TR 026

Anchor type	Diameter of the anchor plate d _{plate} [mm]	Load resistance of the anchor plate N _{u,m} [kN]	Plate stiffness N _{0,m} [kN/mm]		
KI-10 and KI-10PA	60	2,1	0,5		
KI-10M	60	2,6	0,4		

KOELNER KI-10, KOELNER KI-10PA and KOELNER KI-10M

Performances Point thermal transmittance and plate stiffness

Annex C2

	Base material	Bulk density [kg/dm³]	Compressive strength	$rac{N_{_{Rk}}}{3}$ [kN]			$\delta\!\!\left(\!\frac{N_{\scriptscriptstyle Rk}}{3}\!\right)$ [mm]		
A Concrete C50/60 - _ 0,17 0,13 0,17 0,60 0,95 0,63 B Clay brick ≥ 1,70 ≥ 30,0 0,17 0,13 0,13 0,13 0,93 1,05 0,76 B Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) ≥ 2,00 ≥ 20,0 0,20 0,13 0,20 0,86 0,96 0,75 B Calcium silicate hollow block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) ≥ 2,00 ≥ 20,0 0,20 0,13 0,20 0,86 0,96 0,75 C Calcium silicate hollow block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 0,13 0,17 0,73 0,90 0,57		[kg/am]	[N/mm ²]	KI-10	KI-10PA	KI-10M	KI-10	KI-10PA	KI-10M
Concrete C50/60 - _ 0,17 0,13 0,17 0,60 0,95 0,63 B Clay brick \geq 1,70 \geq 30,0 0,17 0,13 0,13 0,13 0,93 1,05 0,76 B Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) \geq 2,00 \geq 20,0 0,20 0,13 0,20 0,86 0,96 0,75 B Calcium silicate hollow block (for example Kalksandstein KS L-R(P) & DIN 106) \geq 2,00 \geq 20,0 0,20 0,13 0,20 0,86 0,96 0,75 C Calcium silicate hollow block (for example Kalksandstein KS L-R(P) & DF Lochstein according to DIN 106) \geq 1,60 \geq 12,0 0,20 0,13 0,17 0,73 0,90 0,57	Concrete C20/25	_	_	0,17	0,13	0,17	0,60	0,95	0,63
B $\ge 1,70$ $\ge 30,0$ $0,17$ $0,13$ $0,13$ $0,93$ $1,05$ $0,76$ B Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) $\ge 2,00$ $\ge 20,0$ $0,20$ $0,13$ $0,20$ $0,86$ $0,96$ $0,75$ B Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) $\ge 2,00$ $\ge 20,0$ $0,20$ $0,13$ $0,20$ $0,86$ $0,96$ $0,75$ C Calcium silicate hollow block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) $\ge 1,60$ $\ge 12,0$ $0,20$ $0,13$ $0,17$ $0,73$ $0,90$ $0,57$ C $a^{1^3} = 30 \text{ mm}$ $\ge 1,60$ $\ge 12,0$ $0,20$ $0,13$ $0,17$ $0,73$ $0,90$ $0,57$	Concrete C50/60	_	_	0,17	0,13	0,17	0,60	0,95	0,63
$B = \begin{bmatrix} example Kalksandstein \\ KS NF 20-2.0 Vollstein \\ according to DIN 106) \\ \hline \\ $	Clay brick	≥ 1,70	≥ 30,0	0,17	0,13	0,13	0,93	1,05	0,76
C $a^{1} = 30 \text{ mm}$ $\geq 1,60 \geq 12,0 0,20 0,13 0,17 0,73 0,90 0,57$	example Kalksandstein KS NF 20-2.0 Vollstein	≥ 2,00	≥ 20,0	0,20	0,13	0,20	0,86	0,96	0,75
	block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) a ¹⁾ = 30 mm	≥ 1,60	≥ 12,0	0,20	0,13	0,17	0,73	0,90	0,57
	KOELNER K and K	I-10, KO OELNEI	ELNER KI-1 R KI-10M	0PA					
		Concrete C50/60 Clay brick Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) Calcium silicate hollow block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) a ¹⁾ = 30 mm 1 1 20 20 20 20 20 20 20 20 20 20	Concrete C20/25 - Concrete C50/60 - Clay brick \geq 1,70 Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) \geq 2,00 Calcium silicate hollow block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) \geq 1,60 $a^{1} = 30 \text{ mm}$ \geq 1,60 $a^{1} = 30 \text{ mm}$ \geq 1,60	Concrete C20/25-Concrete C50/60-Clay brickCalcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106)Calcium silicate hollow block (for example Kalksandstein KS L-R(P) 8 DF Lochstein according to DIN 106) $a^1 = 30 \text{ mm}$ $a^1 = 30 \text{ mm}$ $a^1 = 30 \text{ mm}$	Image: Concrete C20/25 - _ 0,17 Concrete C50/60 - _ 0,17 Clay brick ≥ 1,70 ≥ 30,0 0,17 Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 vollstein according to DIN 106) ≥ 2,00 ≥ 20,0 0,20 Calcium silicate hollow block (for example Kalksandstein KS L-R(P) B DF Lochstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 Quint of the constraint of the constrai	Image: Concrete C20/25 - 0,17 0,13 Concrete C50/60 - 0,17 0,13 Clay brick ≥ 1,70 ≥ 30,0 0,17 0,13 Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) ≥ 2,00 ≥ 20,0 0,20 0,13 Calcium silicate hollow block (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 0,13 Calcium silicate hollow block (for example Kalksandstein KS NF 20-2.0 Vollstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 0,13 Calcium silicate hollow block (for example Kalksandstein KS NF 40-2.0 Vollstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 0,13 a ¹ = 30 mm ≥ 1,60 ≥ 12,0 0,20 0,13 d ¹ = 0 0 0 ≥ 1,60 ≥ 12,0 0,20 0,13	Image: Concrete C20/25 - - 0,17 0,13 0,17 Concrete C50/60 - _ 0,17 0,13 0,17 Clay brick ≥ 1,70 ≥ 30,0 0,17 0,13 0,13 Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Voltstein according to DIN 106) ≥ 2,00 ≥ 20,0 0,20 0,13 0,20 Calcium silicate brick (for example Kalksandstein KS NF 20-2.0 Voltstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 0,13 0,20 Calcium silicate hollow block (for example Kalksandstein KS L-R(P) B DF Lochstein according to DIN 106) ≥ 1,60 ≥ 12,0 0,20 0,13 0,17 a ¹ = 0 o m * 1,60 ≥ 12,0 0,20 0,13 0,17	Image: Concrete C20/25 - 0.17 0.13 0.17 0.60 Concrete C50/60 - 0.17 0.13 0.17 0.60 Clay brick 0.17 0.13 0.17 0.60 Calcium silicate brick (for example Kalksandstein KS VF 20-20 Vollstein according to DIN 106) ≥ 1,70 ≥ 30,0 0,17 0,13 0,13 0,93 Calcium silicate brick (for example Kalksandstein KS VF 20-20 Vollstein according to DIN 106) ≥ 2,00 ≥ 20,0 0,20 0,13 0,20 0,86 Calcium silicate hollow block (for example Kalksandstein KS L-R(P) according to DIN 106) ≥ 12,0 0,20 0,13 0,17 0,73 a ⁰ • 30 mm ± 1,60 ≥ 12,0 0,20 0,13 0,17 0,73 a ¹ • 30 mm ± 1,60 ≥ 12,0 0,20 0,13 0,17 0,73 a ¹ • 30 mm ± 1,60 ≥ 12,0 0,20 0,13 0,17 0,73 a ¹ • 30 mm ± 1,60 ≥ 12,0 0,20 0,13 0,17 0,73	Concrete C20/25 - 0.17 0.13 0.17 0.60 0.95 Concrete C50/60 - _ 0.17 0.13 0.17 0.60 0.95 Clay brick > 0.17 0.13 0.17 0.60 0.95 Clay brick ≥ 1.70 ≥ 30.0 0.17 0.13 0.13 0.93 1.05 Calcium silicate brick (for example Kalksandstein RS N P20-2.0 vollstein according to DIN 106) ≥ 2.00 ≥ 20.0 0.20 0.13 0.20 0.86 0.96 Calcium silicate hollow block (for example Kalksandstein RS I-R(P) a DIN 106) ≥ 2.00 ≥ 20.0 0.20 0.13 0.17 0.73 0.90 a ¹ = 30 mm ≥ 1.60 ≥ 12.0 0.20 0.13 0.17 0.73 0.90

Category	Base material	Compressive strength [N/mm ²]	$rac{N_{Rk}}{3}$ [kN]			$\delta\!\!\left(\!\frac{N_{\scriptscriptstyle Rk}}{3}\!\right)$ [mm]			
		[kg/dm ³]	[N/mm ⁻]	KI-10	KI-10PA	KI-10M	KI-10	KI-10PA	KI-10M
	Perforated ceramic brick (for example HIz B – 1,0 1NF 12-1 according to DIN 105) $a^{1)} = 13 \text{ mm}$	≥ 0,95	≥ 12,0	0,13	0,10	0,13	0,84	0,67	0,52
	Perforated ceramic brick (for example HIz B – 1,0 3NF 12-1 according to DIN 105)								
С		≥ 0,95	≥ 12,0	0,13	0,13	0,13	0,59	0,84	0,64
	a ¹⁾ =13 mm								
	Verticaly perforated porosited block (for example Porotherm 25 P+W)								
		≥ 0,80	≥ 15,0	0,13	0,13	0,10	0,56	0,60	0,49
	a ¹⁾ = 10 mm								
	KOELNER K and k	I-10, KO (OELNE	ELNER KI-1 R KI-10M	0PA				Annex C Europe	

Category	Base material	Bulk density	ensity strength	$rac{N_{Rk}}{3}$ [kN]			$\delta\!\!\left(rac{N_{\scriptscriptstyle Rk}}{3} ight)$ [mm]		
		[kg/dm ³]	[N/mm ⁻]	KI-10	KI-10PA	KI-10M	KI-10	KI-10PA	KI-10M
	Verticaly perforated ceramic block (for example MEGA-MAX 250)								
		≥ 0,80	≥ 15,0	0,10	0,13	0,10	0,61	0,64	0,74
	a ¹⁾ = 12 mm								
С									
-	Lightweight concrete hollow block (for example Hbl according to DIN 18151)								
	$a^{1)} = 30 \text{ [mm]}$								
	NIN.	≥ 0,80	≥ 2,0	0,13	0,13	0,13	0,53	0,72	0,57
D	Lightweight concrete block	≥ 1,56	≥ 20,0	0,17	0,25	0,20	0,99	0,92	0,61
Е	Autoclaved aerated concrete block	≥ 0,35	≥ 2,0	0,03	0,03	0,03	0,50	0,41	0,40
) Minimun	n values "a". For elements w	ith lower v	alue of "a" the lo	ad tests o	on the cons	struction a	are require	d	
<u></u>	KOELNER KI- and KC	10, KO DELNEI	ELNER KI-1 R KI-10M	0PA				Annex (