

eota@tzus.cz

European Technical Assessment

ETA 23/0707 of 24/01/2025

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product R-HLX

Product family to which the construction

product belongs

Product area code: 33

Concrete screw for use in cracked

and uncracked concrete

Manufacturer Rawlplug S.A.

> Ul. Kwidzyńska 6 51-416 Wrocław

Poland

Manufacturing plant Manufacturing Plant No 2

This European Technical Assessment

contains

15 pages including 13 Annexes which form an integral part of this assessment

This European Technical Assessment is issued in accordance with regulation

(EU) No 305/2011, on the basis of

EAD 330232-01-0601

Mechanical fasteners for use in concrete

This version replaces

ETA 23/0707 issued on 19/03/2024

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The R-HLX concrete screw in sizes of 6, 8, 10, 12 and 14 is made of carbon steel with coating.

The anchor is screwed into a drilled cylindrical hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The installed anchor is shown in Annex A1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2
Characteristic resistance for seismic performance	See Annex C 4
category C1 and C2	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	Seen Annex C 3

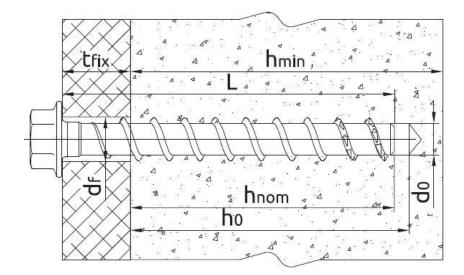
4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

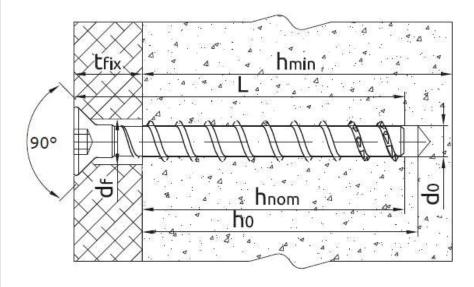
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

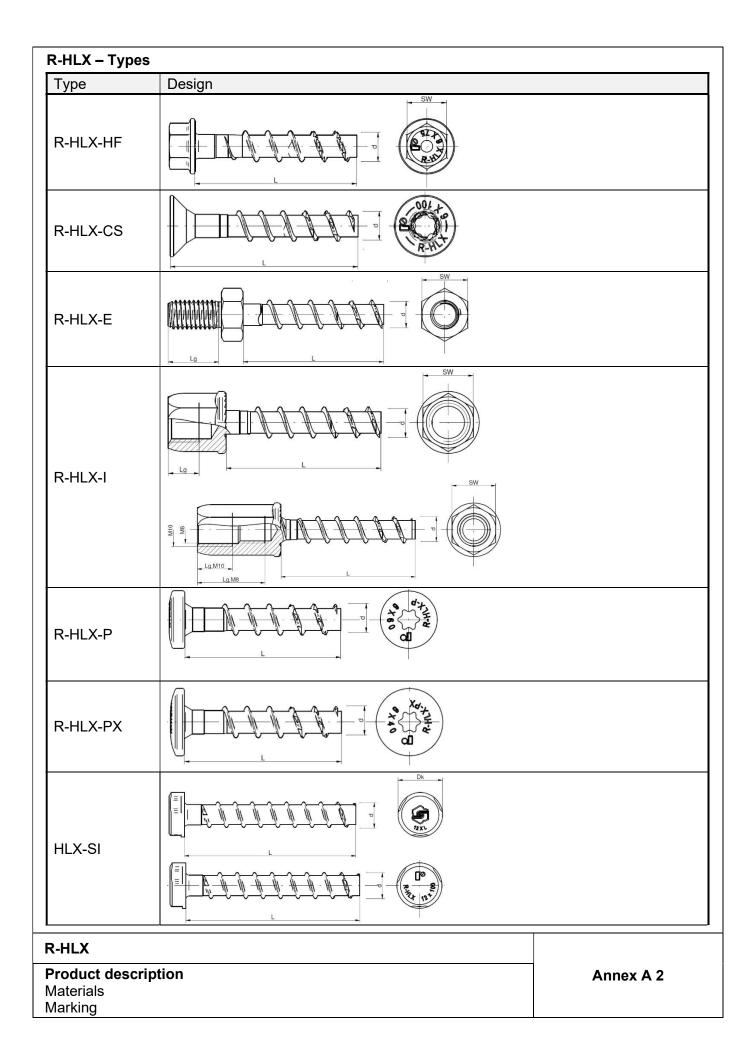
Issued in Prague on 24.01.2025


Ву

Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body



¹ Official Journal of the European Communities L 254 08.10.1996


R-HLX-HF - Installed screw

R-HLX-CS - Installed screw

R-HLX	
Product description Installed conditions	Annex A 1

Table A1 - Materials

Material

Carbon steel; rupture elongation $A_5 \ge 12\%$

Galvanized zinc plating (≥ 5 μm), acc ISO 4042 or

Zinc flake ($\geq 5 \mu m$), acc. ISO 10683

R-HLX and HLX-SI - Marking

Marking:

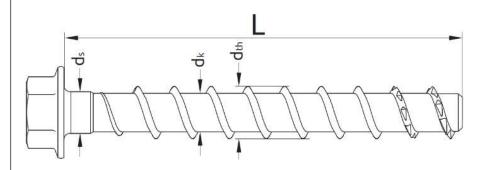
R-HLX Identifying mark of the producer

D x L, where:

D - screw size [mm], e. g. 10

L – length of a screw [mm], e. g. 100

HLX-SI head


D x L, where:

D - screw size [mm], e. g. 10

L – length of a screw [mm], e. g. 100

Table A2 - Dimensions

Nominal diameter	d_{nom}	[mm]	6	8	10	12	14
Threaded outer diameter	d_{th}	[mm]	7,9	10,4	12,7	14,9	16,9
Core diameter	d_k	[mm]	5,6	7,5	9,3	11,5	13,3
Shaft diameter	ds	[mm]	5,85	7,85	9,8	11,95	13,85
Head sizes R-HLX-HF	Sw	[-]	10	13	SW15	SW17	SW21
Head sizes CS	Т	[-]	T40	T50	T50	T50	T50

R-HLX	
Product description Dimensions	Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads
- Fire exposure
- Seismic performance category C1
- Seismic performance category C2, only standard embedment depth

Base materials

- Cracked or uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013+A1:2016.

Use conditions (Environmental conditions)

• Structures subject to dry internal conditions.

Design:

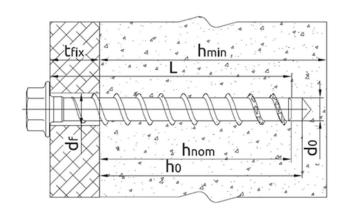
- The anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance with the EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.
- Anchorages under fire exposure have to be designed in accordance with EN 1992-4, Annex D.
- Anchorages under seismic actions have to be designed in accordance with EN 1992-4, Annex C.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. positions of the fastener relative to reinforcement or to support, etc.).

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

R-HLX	
Intended use Specifications	Annex B 1

Table B1 - Installation parameters for standard embedment depth Drill hole Maximum Nominal Min. hole Max. hole Maximum Minimum Minimum Minimum diameter cutting embedment depth diameter in installation thickness of spacing edge diameter depth fixture torque concrete distance Type member d_0 $h_{\text{nom}} \\$ d_f $T_{imp,max} \\$ $d_{\text{cut},\text{max}}$ h_{min} Smin $\boldsymbol{c}_{\text{min}}$ h_0 [mm] [mm] [mm] [Nm] [mm] [mm] [mm] [mm] [mm] R-HLX-6 250 6,4 55 65 80 6 9 35 35 R-HLX-8 8 8,45 70 85 12 350 110 35 35 R-HLX 10 10 10,45 85 95 14 650 130 60 60 R-HLX 12 12 100 110 16 1000 155 80 80 12,45 R-HLX 14 14,45 18 1000 190 100 100 14 115 125


Table B2 - Installation parameters for medium embedment depth

	Drill hole	Maximum	Nominal	Min. hole	Max. hole	Maximum	Minimum	Minimum	Minimum
	diameter	cutting	embedment	depth	diameter in	installation	thickness of	spacing	edge
Type		diameter	depth		fixture	torque	concrete		distance
Туре							member		
	d_0	d _{cut,max}	h _{nom}	h ₀ [mm]	d _f	$T_{imp,max}$	h _{min}	Smin	C _{min}
	[mm]	[mm]	[mm]	110 [111111]	[mm]	[Nm]	[mm]	[mm]	[mm]
R-HLX-6	6	6,4	40	50	9	250	80	35	35
R-HLX-8	8	8,45	60	70	12	350	110	35	35
R-HLX 10	10	10,45	75	85	14	650	120	60	60
R-HLX 12	12	12,45	80	90	16	1000	130	80	80
R-HLX 14	14	14,45	85	95	18	1000	130	100	100

Table B3 – Installation parameters for reduced embedment depth

	Drill hole	Maximum	Nominal	Min. hole	Max. hole	Maximum	Minimum	Minimum	Minimum
	diameter	cutting	embedment	depth	diameter in	installation	thickness of	spacing	edge
Type		diameter	depth		fixture	torque	concrete		distance
Туре							member		
	d ₀	d _{cut,max}	h _{nom}	h. [mama]	df	$T_{imp,max}$	h _{min}	Smin	Cmin
	[mm]	[mm]	[mm]	h ₀ [mm]	[mm]	[Nm]	[mm]	[mm]	[mm]
R-HLX-6	6	6,4	35 ¹⁾	45	9	250	80	35	35
R-HLX-8	8	8,45	50	60	12	350	110	35	35
R-HLX 10	10	10,45	55	65	14	650	100	60	60
R-HLX 12	12	12,45	60	70	16	1000	110	80	80
R-HLX 14	14	14,45	65	75	18	1000	110	100	100

¹⁾ Use restricted to anchoring statically indeterminate structural components

R-HLX	
Intended use Installation parameters	Annex B 2

Installation instructions I – with cleaning (see Table C1 - γ_{inst})

1a

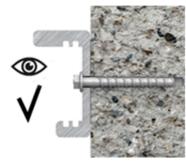
1. Drill the hole with a hammer drill (1a) or a dust-free drill (1b) to the required depth.

Drill hole depth: $h_1 \ge L - t_{fix} + 10 \text{ mm}$

1b

2. Clean the hole (blow dust at least 4 times with the hand pump). When using a dust-free drill bit (1b), it is not necessary to clean the hole by pump.

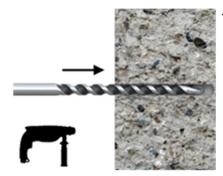
3.


2.

3. Screw the concrete screw into the hole with an impact wrench and a suitable impact socket. Tighten until the fixture is clamped to the substrate.

Installation with any tangential impact wrench.

4.


4. Finish screwing when the screw head presses the fastened element/substrate. The screw head must not be damaged.

R-HLX

Intended use Installation instructions I

Installation instructions II – without cleaning (see Table C1 - γ_{inst})

1

 Drill the hole with a hammer drill to the required depth and 3x ventilation after drilling is executed (moving the drill bit in and out drill hole 3 times after the recommended drilling depth is achieved).

Drill hole depth: $h_1 \ge L - t_{fix} + 25 \text{ mm}$

2.

2. Screw the concrete screw into the hole with an impact wrench and a suitable impact socket. Tighten until the fixture is clamped to the substrate.

Installation with any tangential impact wrench.

3.


3. Finish screwing when the screw head presses the fastened element/substrate. The screw head must not be damaged.

R-HLX

Intended use Installation instructions II

Installation instructions III – adjustment (see Table C1)

4.

4. Possibility to unscrew the fixed anchor to a maximum height of 10mm.

In the adjustment process, the permissible thickness of the fastened elements (T_{fix}) must be observed.

5.

5. Adjust the element and tighten until the fixture is clamped to the substrate.

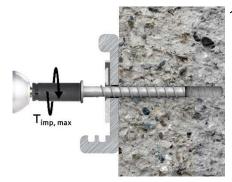
Installation with any impact wrench with tangential impact.

6.

6. Finish screwing when the screw head presses the fastened element (substrate).

The adjustment operation can be performed twice.

Adjustment not allowed for anchorage subjected to seismic actions.


R-HLX

Intended use

Installation instructions III

Installation instructions IV: filling of the annular gap (see Tables C7 and C8 - α_{gap})

1.

 Place the sealing ring on the fixture. Screw the concrete screw into the hole using an impact wrench and an appropriate impact socket. Tighten until the element is pressed to the surface. Installation using any impact wrench with a tangential impact.

2.

2. Finish screwing in when the screw head and the ring presses with the fastened element/substrate. The screw head must not be damaged.

3.

3. Place the dispensing nozzle in the opening of the sealing ring. Fill the annular gap with resin.

4.

4. Correctly installed screw with a sealing ring filled with resin.

R-HLX

Intended use Installation instructions IV

Size				6		8			10			12			14		
Nominal embedment depth	h _{nom}	[mm]	35 ²⁾	40	55	50	60	70	55	75	85	60	80	100	65	85	115
Adjustment																	
Max. thickness of adjustment layers	t _{adj}	[mm]	-	1	10	10	10	10	-	-	10	ı	-	10	-	1	10
Max. number of adjustments	na	[-]	-	ı	2	2	2	2	-	-	2	ı	-	2	-	ı	2
Steel failure																	
Characteristic resistance	$N_{Rk,s}$	[kN]		19,4			35,4			54,3			83,1			111,1	
Partial safety factor	γMs	[-]							•	1,5							
Pull-out failure																	
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p,ucr}	[kN]	4,5	8,01)	13,8 ¹⁾	11,9 ¹⁾	16,3 ¹⁾	20,61)	13,4 ¹⁾	22,3 ¹⁾	27,6 ¹⁾	15,4 ¹⁾	24,6 ¹⁾	35,2 ¹⁾	16,9 ¹⁾	26,4 ¹⁾	43,4 ¹
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	2,0	2,0	3,5	8,0	9,0	11,0	9,41)	15,6 ¹⁾	19,3 ¹⁾	10,71)	17,2 ¹⁾	24,6 ¹⁾	11,8 ¹⁾	18,5 ¹⁾	30,4 ¹
C25/30 C30/37					,	08			1,10 1,22								
Increasing factor C35/45						17 27							1,22				
for concrete C40/50	Ψc	[-]				32							1,41				
C45/55					,	37							1,48				
C50/60	na failu				1,	42							1,55				
Concrete cone and splitti	h _{ef}	1	00	00	40	00	40		40		00	40	- 00	00	40	00	- 00
Effective embedment depth Factor for concrete cone failure		[mm]	26	30	43	39	43	56	42	59	68	46	63	80	49	66	92
for uncracked concrete	e k _{ucr,N}	[-]								11,0							
Factor for concrete cone failur for cracked concrete	e k _{cr,N}	[-]								7,7							
with cleaning Robustness			1,03)	1,03)	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
without cleaning	— γinst I	[-]	1,24)	1,24)	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
concrete cone failur	e Scr,N	[mm]								3 • h _{ef}							
Spacing —————splitting failure	S _{cr,sp}	[mm]	80	90	130	120	150	170	120	180	200	140	200	240	150	200	280
Edge concrete cone failur	e Ccr,N	[mm]				•			1	,5 • h	ef .						

Table C2 - Displacement under tension load

Size		6			8			10			12			14			
Nominal embedment depth	h _{nom}	[mm]	35	40	55	50	60	70	55	75	85	60	80	100	65	85	115
ension load in uncracked concrete N [kN]			2,1	3,8	6,6	5,7	7,8	9,8	7,03	15,03	19,28	8,02	17,92	30,52	10,41	21,63	38,86
Displacement	δηο	[mm]	0,9	1,0	1,3	0,8	1,1	1,3	0,4	0,4	0,6	0,4	0,4	0,6	0,4	0,6	0,7
	δ_{N^∞}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	1,2	1,1	1,2	1,2	1,1	1,2	1,3	1,2	1,4
Tension load in cracked concrete	N	[kN]	1,0	1,0	1,7	3,8	4,3	5,2	4,55	9,05	13,62	6,60	10,25	22,56	7,60	14,30	28,41
Displacement	δηο	[mm]	0,4	0,5	0,5	1,1	1,4	1,7	0,4	0,4	0,5	0,5	0,5	0,7	0,6	0,7	0,7
	δ_{N^∞}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0

R-HLX	
Performances Characteristic resistance under tension load Displacement under tension load	Annex C 1

 $^{^{1)}}$ limited to $N^0_{Rk,c}$ $^{2)}$ Use restricted to anchoring statically indeterminate structural components

³⁾ See Annex B 3

³⁾ See Annex B 4

0:				_			_			40			40			14	
Size				6		8			10			12					
Nominal embedment depth	$h_{\text{nom}} \\$	[mm]	35 ¹⁾	40	55	50	60	70	55	75	85	60	80	100	65	85	115
Steel failure without lever an																	
Characteristic resistance	V^0 Rk,s	[kN]		9,7			17,7			27,2			41,6			55,6	
Ductility factor	k ₇	[-]								1,0							
Partial safety factor	γMs	[-]								1,25							
Steel failure without lever an	m																
Characteristic resistance	M^0 Rk,s	[Nm]		16,1			39,8			75,8			143,4	ļ		221,7	,
Partial safety factor	γMs	[-]						,	1,25								
Concrete cone pry-out failur	е																
Pry-out factor	k 8	[-]	1,0	1,0	1,0	1,0	2,0	2,0	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Installation safety factor	γinst	[-]								1,0							
Concrete edge failure																	
Effective length of anchor	/ f	[mm]	35	40	55	50	60	70	55	75	85	60	80	100	65	85	115
Anchor diameter	d _{nom}	[mm]	6 8 10 12							14							
Installation safety factor	γinst	[-]								1,0							

¹⁾ Use restricted to anchoring statically indeterminate structural components

Table C4 – Displacement under shear load

Size			6	8	10	12	14
Shear load in cracked and uncracked concrete	V	[kN]	5,5	10,1	14,3	20,8	27,8
Displacement	δνο	[mm]	6,0	3,0	1,1	1,4	1,7
	δν∞	[mm]	9,0	4,5	1,7	2,1	2,6

R-HLX	
Performances Characteristic resistance under shear load	Annex C 2
Displacement under shear load	

Size			6			8			10			12			14		
Nominal embedme	nt depth h _{nom}	[mm]	35 ²⁾	40	55	50	60	70	55	75	85	60	80	100	65	85	115
Fire resistance du	uration at 30 n	ninutes	5											,			
Steel failure	N _{Rk,s,fi(30)}	[kN]		1,8			3,8			6,6			11,4			15,2	
Pull-out failure	N _{Rk,p,fi(30)}	[kN]	0,5	0,5	0,8	2,0	2,2	2,7	2,3	3,9	4,8	2,6	4,3	6,1	2,9	4,6	7,6
Fire resistance dı	uration at 60 n	ninutes	5														
Steel failure	N _{Rk,s,fi(60)}	[kN]		1,4			2,9			5,0			8,5			11,4	
Pull-out failure	N _{Rk,p,fi(60)}	[kN]	0,5	0,5	0,8	2,0	2,2	2,7	2,3	3,9	4,8	2,6	4,3	6,1	2,9	4,6	7,6
Fire resistance du	uration at 90 n	ninutes	5														
Steel failure	N _{Rk,s,fi(90)}	[kN]		1,0			2,0			3,4			5,7			7,6	
Pull-out failure	N _{Rk,p,fi(90)}	[kN]	0,5	0,5	0,8	2,0	2,2	2,7	2,3	3,9	4,8	2,6	4,3	6,1	2,9	4,6	7,6
Fire resistance dı	ration at 120	minute	es														
Steel failure	NRk,s,fi(120)	[kN]		0,8			1,6			2,6			4,3			5,7	
Pull-out failure	N _{Rk,p,fi(120)}	[kN]	0,4	0,4	0,7	1,6	1,8	2,2	1,8	3,1	3,8	2,1	3,4	4,9	2,3	3,6	6,0
Spacing	S _{cr,N}	[mm]		4 h _{ef}													
Edge distance	Ccr,N	[mm]	2 h _{ef}														

¹⁾ In absence of other national regulations, the partial safety factor for resistance under fire exposure is recommended $\gamma_{M,fi} = 1,0$ for steel failure and concrete related failure modes under shear loading.

Table C6 – Characteristic values for fire resistance under shear load¹⁾

Size			6	•		8			10			12			14	
Nominal embedment depth hnd	m [mm]	35 ²⁾	40	55	50	60	70	55	75	85	60	80	100	65	85	115
Fire resistance duration at 30 mir	utes															
Characteristic resistance V _{Rk,s}	fi(30) [kN]		1,8			3,8			6,6			11,4			15,2	
Characteristic bending resistance $M^0_{Rk,s}$	s,fi(30) [Nm]		1,5			4,3			9,3			19,7			30,4	
Fire resistance duration at 60 mir	utes															
Characteristic resistance V _{Rk,s}	fi(60) [kN]		1,4			2,9			5,0			8,5			11,4	
Characteristic bending resistance M ⁰ Rk,	s,fi(60) [Nm]		1,2			3,3			7,0			14,8			22,9	
Fire resistance duration at 90 mir	utes															
Characteristic resistance V _{Rk,s}	fi(90) [kN]		1,0			2,0			3,4			5,7			7,6	
Characteristic bending resistance M ⁰ Rk,	s,fi(90) [Nm]		0,8			2,3			4,8			9,9			15,3	
Fire resistance duration at 120 mi	nutes	•														
Characteristic resistance V _{Rk,s} ,	i(120) [kN]		0,8			1,6			2,6			4,3			5,7	
Characteristic bending resistance M ⁰ _{Rk,s}	fi(120) [Nm]		0,7			1,8			3,7			7,4			11,5	

¹⁾ In absence of other national regulations, the partial safety factor for resistance under fire exposure is recommended $\gamma_{M,fi}$ = 1,0 for steel failure and concrete related failure modes under shear loading. For concrete related failure under tension $\gamma_{M,fi}$ = 1,0 • γ_{inst}

R-HLX	
Performances Resistance to fire	Annex C 3

For concrete related failure under tension $\gamma_{M,fi} = 1,0 \cdot \gamma_{inst}$ 2) Use restricted to anchoring statically indeterminate structural components

²⁾ Use restricted to anchoring statically indeterminate structural components

Table C7 - Characteris	tic res	istan	ce und	ler sei	smic	act	ion d	cate	gory	C1						
Size			6		8			10			12			14		
Nominal embedment depth	h _{nom}	[mm]	40	55	50	60	70	55	75	85	60	80	100	65	85	115
Tension load																
Steel failure	N _{Rk,s,C1}	[kN]	19	,4		35,4			54,3			83,1			111,1	
Pull-out failure	N _{Rk,p,C1}	[kN]	2,0	3,5	7,6	8,6	10,5	8,6	14,4	17,8	7,6	12,2	17,5	8,4	13,1	21,6
Shear load																
Steel failure	V _{Rk,s,C1}	[kN]	4,	,7		10,6			18,7			28,7			38,3	
Reduction factor according to EN 1992-4:2018 without gap filling	αgap	[-]							0,5							
Reduction factor according to EN 1992-4:2018 with gap filling (see Annex B 4)	αgap	[-]							1,0							

Table C8 – Characteristic resistance under seismic action category C2

Table Co - Characteris	Stile i es	nstan	ce under seism	ic action catego	ory CZ	
Size			8	10	12	14
Nominal embedment depth	h _{nom}	[mm]	70	85	100	115
Tension load						
Steel failure	N _{Rk,s,C2}	[kN]	35,4	54,3	83,1	111,1
Pull-out failure	N _{Rk,p,C2}	[kN]	2,0	8,5	13,3	19,3
Shear load						
Steel failure	V _{Rk,s,C2}	[kN]	3,6	8,0	22,3	21,6
Reduction factor according to EN 1992-4:2018 without gap filling	$lpha_{\sf gap}$	[-]		0	,5	
Reduction factor according to EN 1992-4:2018 with gap filling (see Annex B 4)	$lpha_{\sf gap}$	[-]		1	,0	

Table C9 - Displacement under tension and shear load - seismic action category C2

Size			8	10	12	14
Nominal embedment depth	h_{nom}	[mm]	70	85	100	115
δN,C2(DLS)		[mm]	0,50	0,36	0,44	0,57
$\delta_{N,C2(ULS)}$		[mm]	1,19	1,29	1,65	2,55
$\delta_{ m V,C2(DLS)}$		[mm]	1,98	5,59	5,00	6,66
$\delta_{ extsf{V,C2(ULS)}}$	•	[mm]	6,24	7,10	7,90	9,24

Note: Adjustment (see Annex B 5) not allowed.

R-HLX	
Performances Characteristic resistance under seismic action category C1 and C2	Annex C 4